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Abstract 
Unrefined or partially refined models of macro- 
molecules are generally incomplete and typically 
have large coordinate errors. It is shown that 
phase probability equations appropriate for a perfect 
partial structure lead to inaccurate estimates of phase 
probabilities in such cases. Therefore, it is necessary 
to use equations that have been derived allowing for 
errors in the partial structure. A method is given to 
estimate the parameter era in these phase probability 
expressions from the observed and calculated struc- 
ture factor amplitudes. From the variation of O'A with 
resolution, one can estimate the mean coordinate 
error for the model. Electron density maps calculated 
using partial structure phases are biased towards the 
partial structure. When there are coordinate errors, a 
new expression for the non-centric Fourier coeffi- 
cients [(2mFNi-DIF~p)exp(ia~)] is required to 
suppress this model bias. Judged by correlation 
coefficients comparing electron density maps with the 
correct and the partial structure maps, the Fourier 
coefficients derived here are superior to others cur- 
rently in use. 

1. Introduction 

Accurate phase probabilities are important for com- 
bining independent sources of phase information 
(Rossmann & Blow, 1961; Hendrickson & Lattman, 
1970) or for calculating probability-weighted electron 
density maps (Blow & Crick, 1959). Woolfson (1956) 
and Sim (1959, 1960) derived expressions for phase 
probabilities from partial structures for centric and 
non-centric structure factors respectively. Srinivasan 
and co-workers extended this work to include coor- 
dinate errors in the partial structure (Srinivasan & 
Ramachandran, 1965; Srinivasan, 1966). 

Two problems arise when one attempts to apply 
the results on phase probabilities to the calculation 
of electron density maps using partial structure 
phases. The first problem is that of estimating either 
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EQ or o A from the observed and calculated structure 
factor amplitudes, in order to obtain accurate phase 
probabilities. The parameter "~o, which measures the 
amount of missing scattering matter, is used in the 
expressions of Woolfson (1956) and Sim (1959, 1960); 
O'A, which is a combined measure of the completeness 
and the accuracy of the partial structure, is required 
for the expressions of Srinivasan (1966). (These terms 
and others are defined in Table 1.) § 2 deals with the 
estimation of these parameters and with the evalu- 
ation of thier associated phase probability distribu- 
tions. The second problem, which is treated in § 3, is 
that of minimizing the bias towards the model in a 
model-phased electron density map. 

2. Estimating phase probabilities for partial structures 

2.1. Estimating ~,Q 

It has been common to assume that the probability 
expressions for partial structures with no coordinate 
errors provide a reasonable approximation for the 
case with errors. These expressions require an esti- 
mate for Z o, modified perhaps to include a contribu- 
tion from errors (Rossmann & Blow, 1961). Because 
of thermal motion and the finite size of atoms, 27o is 
a function of resolution and is generally estimated 
for several resolution ranges. Blundell & Johnson 
(1976, p. 418) suggest the mean square deviation 
between the structure factor amplitudes for the com- 
plete and partial structures, ([FNI--iFpI) 2, as an 
empirical estimate. However, when F o, the missing- 
atoms structure factor, is small compared to and 
independent in direction of Fp, (IFN[-[Fp[): is a 
measure of the variance of each component of F o, 
the components in phase and out of phase with Fv 
(Henderson & Moffat, 1971). Therefore, a better esti- 
mate is given by 

(1) 

where n = 2 for non-centric reflections and 1 for cen- 
tric reflections, which have no out-of-phase com- 
ponent for FQ. The factor e corrects for the difference 
in expected intensity for different reciprocal-lattice 
zones. Bricogne (1976) suggests 

-- I Iv,,, Iv,,l l. 
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Table 1. Definitions o f  terms and notation 

S o m e  te rms  are  no t  g iven  expl ici t ly ,  bu t  are  a n a l o g o u s  to  t e rms  
def ined  here.  

= mean value of  x 

(x) = expected value, or probability weighted average, of  x 

FN = ~, fjexp(21ris.rl)+ ~ fjexp(2fris.rl) 
j = l  j=P+I 

where s is the reciprocal-lattice vector (Is[ = 2 sin 0/A) and the rj are 
the atomic coordinates (in A) 

= Fp + FO, where the P atoms constitute the partial structure and the 
Q atoms the missing structure 

= IFNI exp (iaN) 

F~, = ~. fj exp [21ris. ( r j+Arj ) ] ,  where Arj are positional errors 
j=l  

= structure factor of  partial structure with errors 

D = (cos (2~rs. Ar)) (Luzzati, 1952) 

e = correction factor for expected intensity in reciprocal-lattice zone 

zN= ~ f~=(Ir~¢1218> 
j=l 

E N = F N / ( e E N )  1/2 

O" A = D ( Z p /  X N )  t/2 

m = (cos (aN - a~,)) 

= I t ( X ) / l o ( X )  for non-centric reflections, where Io and I x are the 
zero and first-order modified Bessel functions, respectively, or 

= tanh (X/2)  for eentric reflections, where 

X =21FNIIF.I/~z o for a partial structure with no errors (Woolfson, 
1956; Sire, 1959, 1960) 

-- 2~AIE~I IE~I/O - ~Y,) for a partial structure with e r r o r s  (Srinivasan, 
1966) 

With a correction for expected intensity included, this 
becomes 

This expression is used most commonly. Finally, for 
non-centric data 

(IFQI2>= IFNI2+ r.12-21v l v.lI,(x)/r.o(x), 
where 

X=21FN F I/`TQ 
(Srinivasan, 1968). Nixon & North (1976) note this 
and solve the equation 

T. (IFQ 2)= E ̀TQ 
h h 

= E [IVN 2+ IV,, 2_ 21FN r III(X)//o(X)] 
h 

for `TQ by numerical methods. If  this is extended to 
include centric data and again the factor e is included, 
it becomes 

E ( FQ 2/e)  = E ~YQ 
h h 

=E[(IFNI=+IF 2-2mIFN r,,)/q, (3) 
h 

where m is the appropriate expression for the figure 

of merit of  centric or non-centric data (see Table 1). 
It is instructive to test these methods on calculated 
data where the correct values of `To and the phase 
error are known. 

Any reliable method for estimating `To should work 
in the ideal case of a perfect partial structure. Such 
a case was modelled by taking as FN the calculated 
structure factors for Streptomyces griseus trypsin 
(SGT) at cycle 78 of least-squares refinement when 
the R factor was 0.159 (Read, Brayer, Jurfi~ek & 
James, 1984). About 30% of the atoms were removed 
randomly to give a partial structure from which Fe 
was calculated. This test data set will be referred to 
as TD1. The correct value of `To was calculated as a 
function of resolution from the scattering factors of 
the missing atoms. Estimates of ,T O were calculated 
using (1), (2) and (3) (with the appropriate values of 
e for the different zones of the space group C2221). 
In Fig. l (a ) ,  the correct values of `To and the three 
sets of estimates are shown; in Fig. l(b),  
cos (aN - ore) is compared to r~ calculated from each 
set of estimates. Equation (3) gives the best results, 
while (1) and (2) lead to a slight underestimate and 
a large overestimate respectively of `To. 

By the time one has accurate coordinates in protein 
crystallography, however, there is comparatively little 
need for phase probabilities. In the early stages of 
developing a structure, there are large coordinate 
errors. A more realistic set of test data (referred to 
as TD2) was constructed, using as F~, the structure 
factors calculated for SGT at cycle 7 of refinement. 
At cycle 7, the R factor was 0.455 to 1.7/~ resolution. 
Parts of the structure were missing, including all of 
the solvent molecules, and the model was similar to 
bovine trypsin ha places where SGT is not. Individual 
thermal motion parameters had not yet been intro- 
duced, and the parts of the model that were essentially 
correct were inaccurate. Fig. 2 demonstrates that, for 
TD2, neither the method of Bricogne [(2)] nor even 
that of Nixon & North [(3)] gives reliable estimates 
of pha~e probabilities. The problem is not one of 
being unable to estimate `To correctly [even when the 
phases are used to estimate `To via [FN-F~,I2/e,  
r~ does not agree with cos ( a N - a ~ , ) ] ;  rather the 
problem is that the phase probability expressions 
are no longer valid. 

2.2. Estimating or A 

Since one may not safely ignore coordinate errors, 
it is necessary to use the phase probability distribu- 
tions of Srinivasan and co-workers. Srinivasan & 
Ramachandran (1965) showed that, when the proba- 
bility distributions are cast in terms of normalized 
structure factors, the effects of missing structure and 
of coordinate errors are formally equivalent. The 
parameter O'A in these expressions varies from zero, 
when the partial structure provides no phase informa- 
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tion (no atoms in the partial structure, or an unrelated 
partial structure), to one, when the partial structure 
is perfect and complete. The factor D in O'A (see Table 
1) varies strongly with resolution when there are 
significant coordinate errors. As a result, tr,~ ~hould 
generally be estimated for several resolution ranges. 

Hauptman (1982) has derived joint probability dis- 
tributions for structure factors from isomorphous 
pairs of structures. In these equations, his parameter 
a plays the same role as O'a in the expressions of 
Srinivasan. Hauptman suggests that O'A can be esti- 
mated as the square root of the correlation coefficient 
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Fig. 1. Evaluation of  methods for estimating EQ in the ease of a 
perfect partial structure (TD1). Estimates were calculated for 15 
ranges of  equal width in (sin 0 /h )  2. • = e s t i m a t e  calculated 
according to (1) (Henderson & Mottat, 1971). • = estimate from 
(2) (Bricogne, 1976). • =estimate from (3) (Nixon & North, 
1976). (a) Estimates of Zo- The correct value, calculated as a 
function of  sin 0/A, is shown by the curve. The three sets of  
points show the three sets of  estimates. (b) Estimates of 
cos ( a N -  a~,). The smooth curve connects the mean values of  
cos (aN -- ae) for each resolution range, shown by I The other 
points are the mean values of m calculated from the estimates 
of  Z o shown in (a). 

between IE, t ~ and E2[ 2. 

Z ( E,I 2-  IE,I~)(IE~I ~- IE2I 2) 1 
[z ( E,I FETId) Z (IF Z- 

1/2 

(4) 

Lunin & Urzhumtsev (1984) have proposed that 
parameters defining phase probabilities for partial 
structures with errors can be estimated from non- 
centric structure factors by maximizing a likelihood 
function. In the Appendix, this approach is extended 
to include centric data, and it is shown to correspond 
to estimating trA by finding the zero of the residual 
function 

R=Y w(cra- mIEN[ IE~,I). (a8) 

In (A8), w = 1 for centric and 2 for non-centric reflec- 
tions, m is the appropriate function of tra, and the 
structure factors are normalized so that ~ wIE[2/Z w --- 
1. Equation (A8) is consistent with the result of 
Srinivasan & Chandrasekaran (1966) that 

O'A =(IE, IIE2] cos (a,-a2)>/((IE,12>(IE212>) '/2. (5) 

Newton's method is used to solve for the zero of 
the residual function R; the initial estimate of o" A is 
calculated from (4). 

dR/dtrA=~ w(1-lENllE~pldm/dO-A). (6) 

The expression for m differs for centric and non- 
centric data. 

For centric data, 

d m / d O ' A = ½ ( 1 - m 2 )  d X / d o ' A .  (7 )  
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Fig. 2. Evaluation of phase probabilities calculated from estimates 
of  E o in the case of  a partial structure with coordinate errors 
(TD2). The smooth curve connects the mean values of  cos (aN - 
a~,) for each resolution range ( I ) .  • = mean values of m calcu- 
lated from E o estimated by (2). • = mean values of m calculated 
from Z O estimated by (3). • = mean values of m calculated from 
Z<~ estimated from [ F N - F ~ I V e ,  i.e. using a knowledge of the 
phases. 
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For non-centric data, 

dm/  dora = [ 1 - (m/  X )  - m 2] d X /  dorA. (8) 

Finally, 

dX/dor, t=2  ENllE~l(l +or2A)/(1--or2A)Z. (9) 

Equations (6) through (9) define dR~dorA, and the 
next estimate of OrA is given by 

orA, i+l = orA.i -- R~ (dR~dorA). 

The refinement generally converges in three or four 
cycles. 

2.2.1. Practical considerations in the algorithm. The 
parameter or A varies with resolution. Therefore, O" A is 
evaluated in shells of equal width in (sin 0/A)2. When 
there are between 500 and 1000 reflections in each 
shell, the estimates of orA seem to vary fairly smoothly 
and reliably. When there are too few reflections in a 
shell and the correct value of OrA is small, there is 
sometimes a negative correlation between ]ENI 2 a n d  

IEgl 2, in which case any starting value of OrA refines 
to zero. [Note from (A8) that orA = 0 is always a zero 
of the residual R.] In general, the algorithm is less 
stable and the results less reliable when the correct 
value of orA is small. In this case, it is necessary to 
have a larger number of reflections in each resolution 
shell. 

If the method used to normalize the structure fac- 
tors does not result in the weighted mean of IEI ~ being 
precisely unity, the simplifications made in the 
Appendix are not valid. The easiest solution is to 
renormalize within each resolution shell. Otherwise, 
one must return to (A6) and (A7) in the Appendix. 

2.2.2. Results of  O'A estimation. Figures of merit 
calculated using Or A are much more reliable than those 
calculated using ~o (compare Fig. 3 with Figs. 1 and 
2). From Fig. 3 one sees that the refined estimates of 
OrA are slightly better than the estimates from (4), and 
that they lead to somewhat more reliable figures of 
merit for both sets of test data. (In implementing 
these methods, one might decide that the increased 
accuracy does not justify the increased programming 
effort.) 

Lunin & Urzhumtsev (1984) observed that the 
accuracy of phases obtained from models refined in 
reciprocal space is overestimated. This effect can be 
seen in the TD2 data. The first seven cycles of 
refinement for SGT used 6.0 to 2.8/~ data, and the 
figures of merit are systematically overestimated only 
within these resolution limits. In some way structure 
refinement must alter the distributiol~ of errors; even 
the values of ora calculated using the phase differences 
via (5) give slightly high figures of merit. 

2.2.3. Omission of  small IFNI. In macromolecular 
crystallography, many low-intensity measurements 
are quite unreliable. The practice of discarding these 
observations has been criticized (e.g. Hirshfeld & 
Rabinovich, 1973), but is still quite common. This is 
probably due in part to concerns of cost and computer 
memory; in addition, the resulting bias is less pro- 
nounced for positional than for thermal motion pa- 
rameters. 

When low-intensity reflections are discarded, the 
distribution of ]FNI is altered, so that the joint distri- 
bution of IFN and IF~, is altered. Therefore, under 
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Fig. 3. Evaluation of methods for estimating trA. Open symbols 
are used for the test with TD1, closed symbols for TD2. (a) 
Estimates of  ~'A- The smooth curves connect the values of  ~'A 
calculated from (5) for each resolution range (Q and I1). The 
triangles (A and A) show the estimates of ~A from (4); the 
circles (O and 0 )  show the refined estimates of  erA. (b) Com- 
parison of  cos (aN - o~g) and ~. The smooth curves connect the 
mean values of cos (aN - a~,). Other points indicate the mean 
values of  m calculated from the estimates of O'A shown with the 
same symbols as in (a). In addition, the diamonds (~  and 4,) 
show the mean values of m calculated from the values of O'A 
determined with (5). 
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these circumstances, phase probabilities determined 
using (4) are unreliable. On the other hand, the distri- 
bution of [F~, conditional on IFN[ is unaffected, so 
that the equations derived in the Appendix are still 
valid. Numerical tests (results not shown) confirm 
this conclusion. However, the reduction in the num- 
ber of observations can aggravate the instability in 
the algorithm when trA is small, so that figures of 
merit determined using all of the data are more 
reliable. In addition, the inclusion of data that were 
not used in structure refinement would be expected 
to reduce the overestimation of O'A. 

2.2.4. Estimation of  coordinate error from irA. The 
Luzzati (1952) plot, which is commonly used to esti- 
mate coordinate errors in macromolecular structures, 
is based on the variation of D (see Table 1) with 
resolution. Srinivasan & Ramachandran (1965) note 
that, if the variation in O'A with resolution is ascribed 
to the factor D, the resolution dependence of o" A can 
also be used, in principle, to estimate the mean coor- 
dinate error of the atoms comprising the partial struc- 
ture. However, the approach developed in later 
papers (e.g. Srikrishnan & Srinivasan, 1968) is to 
calculate an overall normalized R factor that, in a 
comparison with theoretical values, leads to a value 
for the mean coordinate error; this approach requires 
one to make an accurate a priori estimate of the ratio 
( ~ / ~ ) .  

If the coordinate errors are assumed to be normally 
distributed, then 

D = exp [ -  =3((Izarl))2(sin 0/,x )2], 

that results from structure refinement (Lunin & 
Urzhumtsev, 1984). 

For highly-refined structures, the observation 
errors in ]FN|will contribute significantly to the dis- 
agreement with F~I. Since the proportional error in 
IFNI generally increases with resolution, measurement 
errors will tend to lead to an overestimate of the 
coordinate error. The nonlinearity at high resolution 
of the trA plot shown in Fig. 4 can probably be 
attributed in part to measurement errors. In addition, 
only a minority of the highest-resolution data are 
above the cutoff used in refinement, so that the over- 
estimation of O'A due to structure refinement might 
be reduced at high resolution. 

Similar considerations affect the use of the method 
of Luzzati (1952), except that the condition on the 
ratio (,Y,p/2N) is more restrictive: it is assumed 
implicitly that •p  and EN are equal. In a Luzzati 
plot, one compares a family of theoretical curves to 
R factors calculated in resolution shells; the O" A plot 
defined by (10) requires the determination only of 
the slope of a line. Since o- A is calculated from normal- 
ized structure factors, the or A plot, unlike the Luzzati 
plot, is unaffected by scaling errors. Though a O" A plot 
must be interpreted with due care, it is therefore 
preferable in several respects to the Luzzati plot. 

3. Removing model bias from maps 

Structural information in the Fourier synthesis is 
contained to a great extent in the phase angles 
(Ramachandran & Srinivasan, 1970; Oppenheim, 
1981). Therefore, electron density maps phased with 

where (JAr) is the expected value of the coordinate 
error (in A) (Luzzatil 1952). Therefore, 

In O'A = (1/2) I n  (, ,~p/ZN)- =3(([za rl))2(sin 0/x )2. 
(10) 

If the ratio (~'P/~'N) is constant, then a plot of In ~rA 
VS (sin O/h) 2 should give a straight line with a 
slope of [ - -Tr3(( IAr[) )  2] and an intercept of 
(1/2) In (Ee/E,N). An example of a O'A plot is shown 
in Fig. 4. 

By assuming that (,~e/EN) is constant, one assumes 
that the missing atoms are of the same type and have 
the same overall temperature factor as the atoms 
included in the partial structure. Clearly, this is 
invalid for the disordered solvent in a protein crystal; 
in applying (10) it will be necessary to ignore data 
to which the disordered solvent atoms contribute 
significantly, i.e.. reflections at lower than 5 or 6/1. 
resolution (see Fig. 4). Atoms missing from partial 
structures often come from the less-well-ordered 
regions. This will hinder the use of (10) at inter- 
mediate stages of structure refinement. The O'A plot 
will also be affected by the overestimation of era 
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Fig. 4. Est imat ing coordinate errors wi th  a o" A p lot  for  SGT at 
cycle 78 of least-squares refinement. To show the effects of 
disordered solvent and measurement errors, observed structure 
factors are used as I1%1. (For reflections with negative measured 
intensities, IFNI is set to zero. In the highest-resolution range, 
20.9% of the reflections fall into this category.) The line is a 
least-squares fit to all the points excluding the first three and 
the last four. From the intercept (0.000), (Ep/E N) = 1.000, and 
from the slope (-1.410~2),  (Izirl)= 0.213/~,. 
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model phases are biased towards the model. Several 
suggestions have been made for Fourier coefficients 
that reduce model bias. 

Luzzati (1953) showed that, for an almost complete 
structure, a map with non-centric coefficients 
[FNlexp(it~e) will show the missing atoms ~tt 
half weight, but at less than half weight when 
more of the structure is missing. Because of this effect, 
maps with the commonly used coefficients (2IFN ] -  
]F~,]) exp (it~,) bring missing atoms up towards full 
weight. For a generalized version of these coefficients, 
In FN - ( n -  1)IF~,I] exp (iap), Vijayan (1980) deter- 
mined the value of n appropriate for different 
amounts of missing structure. Following a somewhat 
different approach, Main (1979) showed that, for 
non-centric data, 

mlF~[ exp (iotp)--~ ½FN +½Fp 

so that non-centric coefficients that reduce model bias 
are given by (2mlrNl-IF~l)exp(~).  Main's 
approach will be extended here to the case of a partial 
structure with errors. 

3.1. Non-centric case 

Following Main (1979), we start with the cosine law 

ISI=- - IENI = + ~XIE~I 2 -  2 cos (a~  - a ~)~IEN I lEVi. 
(11) 

We use O'AE ~, instead of E~ because the expected 
magnitude and direction of 8 (=EN--CrAE~) are 
uncorrelated with those of E~,. Thus, EN, OrAE~, and 
8 are interrelated in the same way as FN, Fp and F o, 
respectively. Replacing both sides of (11) by expected 
values, 

(1812> = IENI 2 + ~IE%I 2 -  2m~lE~l lEVI. 

Noting that 

Iv~N 2= r ~ E *  = V~N(~AE~* +S*), 

we can rearrange and multiply both sides by exp (ia~,) 
to get 

miEN I exp (iota,) 

= EN/2 + trAE~/2 + ENS*/2O'AE~*--(ISI2)/2trAE~ * 

mIEN exp (icr~,) 

= EN/2 + trAE~/2 + (8*/2) exp (2ia~,) 

+  i[2))/2OrAE  *. (12) 

In the Fourier transform of miEN I exp (ia~,), third 
and fourth terms of (12) will lead to background noise 
[cf. Main (1979)]. Therefore, ignoring the noise con- 
tributions, 

EN = (2m EN[-  O'A E~,i) exp (ia~,) 
(~3) 

F N --~ ( e-~N)I/2(2mIEN]- CrAIE~I) exp (ia ~). 

Substituting into (13) the expression for O" A from 
Table 1, we get 

F N = ( 2 m l F ~ l - D l F ~ l ) e x p ( i a ~ ) .  (14) 

Thus, when there are no errors in the coordinates of 
the partial structure, D = 1 and (14) simplifies to give 
the Fourier coefficients derived by Main (1979). An 
advantage to working with normalized structure fac- 
tors is that the scale factor and overall B value used 
in calculating structure factors do not affect the values 
of E~,, so that errors in these quantities have no effect 
on Fourier coefficients calculated from (13). The 
information on the scale and B parameters relative 
to those of IFN[ is contained in the values of or a (see 
Table 1), which vary as a function of resolution. 

3.1.1. Effect of  truncated data on non-centric map 
coefficients. The estimation of O" A from the equations 
derived in the Appendix depends on the conditional 
probability P(E~,; EN), whereas the derivation of (13) 
depends on P(EN; E~,). As long as the structure fac- 
tors are normalized to be on the same scale  (([E~,[ 2) = 
(IENI2)), these expressions will be symmetrical 
(Srinivasan & Ramachandran, 1965), so that the value 
of O" a in P(E~,; EN) is the same as in P(EN; E~,). This 
will be true when the data are complete. When low- 
intensity observations are discarded, normalization 
over the truncated data changes the relative scale of 
IENI and lEVI. 

If we use a prime to indicate variables derived from 
truncated data, and if we let IE~,I = kNIENI and IE~I- 
kPIE~l, then tr'A=(kp/kN)tra (as discussed in the 
Appendix) and Z '  - 2 N - -Y,N/kN. If one uses these values 
in (13), 

(e.~r)l/2(2mlE~vl- g~lE~/[) 

= 2mlFl,1 - (kP/kN)2DIF~I (15) 

Therefore, if not accounted for, data truncation will 
introduce a systematic error into the map coefficients. 
Knowing the relative size of ke and kN, however, one 
can make the appropriate correction. 

It is necessary to determine only one of ke and kN; 
the other can then be estimated. From (A6), 

~E w(lE~dl2- ~5~]E%]2)/Z w =  1 -  try, (16) 

where the sums are taken over the truncated data. 
Since the difference vector (E~,'- tr~E~v) is indepen- 
dent of E~v, (16) would be valid even if the missing 
data were added. Therefore, 

k2 ~2 ,2 ~ p - -  K, N O r  A - -  1 - . (17) 

Thus, if kN is determined by comparing -XN with ,X ~v, 
kp can be calculated from (17) and the correction 
implied by (15) can be made to the non-centric map 
coefficients. 
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3.2. Centric case 

In the centric case, we start from (12) and note that 

(8*/2) exp (2ia~,)=8/2 

because 
c 

a e  - -  t~ad-  nTr. 

Therefore, 

mIEN e x p ( i a ~ ) = E N + ( 1 8 1 2 - ( ~ l = ) ) 1 2 C r A E 7  • (18) 

As in the case treated by Main (1979), therefore, the 
appropriate Fourier coefficients for centric data are 
simply mlV~l exp (ia~,). 

3.3. Evaluating the map coefficients 

It is difficult to do objective visual comparisons of 
electron density maps calculated with different 
coefficients. One common quantitative measure for 
comparing maps is the root-mean-square value of the 
difference electron density (Blow & Crick, 1959). A 
related measure, which has the virtue of being 
unaffected by scaling errors, is the coefficient of corre- 
lation between electron density maps. For an electron 
density map omitting the contribution of the F00o 
term, the mean density is zero, so that the correlation 
coefficient is defined by 

L p,(x)p2(x) dx 
r = [Jv Pl(X) 2 dx ~v p2(x) 2 dx] 1/2" 

Application of the convolution theorem gives 

E F, IIF=I cos (0~1-- Off2) 
r =  (19) 

[EIF,rEIF I ] ' / ~  ' 

where the sums are taken over a hemisphere of 
reciprocal space. One might note, comparing (19) and 
(5), that the correlation coefficient between two E 
maps is equivalent to an overall value of irA. 

TWO correlation coefficients will be used as objec- 
tive criteria to judge electron density maps. The first 
is the correlation with the correct map (i. e. the Fourier 
transform of F N), which should be as close as possible 
to unity. Following a similar argument to that of Blow 
& Crick (1959), one can show that the maximum 
correlation between the correct map and one with 
Fourier coefficients (w,IVNl+w=lrgl)exp(i,~)is 
obtained when w~ = m a n d  w :  = 0; any coefficients 
designed to compensate for model bias will lower the 
correlation with the correct map. Nonetheless, model 
bias in an electron density map makes it difficult to 
detect and correct errors in the model. For this reason, 
coefficients that reduce model bias lead to maps that 
are subjectively (even if not objectively) improved. 
Optimal map coefficients will reduce model bias at 

Table 2. Correlation coefficients between electron 
density maps for TD2 

N o n - c e n t r i c  
F o u r i e r  coeff ic ients  C o r r e c t  m a p  M o d e l  m a p  

o f  t e s t ed  m a p *  (coeff ic ients  FN)  (coeff ic ients  F~,) 

FN 1.0 0.585 
iFNI exp (iacp) 0.640 0.851 
mIFNi exp (ia~,) 0.698 0.833 
(2m FN - D F~, ) exp (it~,) 0.663 0.659 
(2m Fr~ - DIF~,I) exp (ia~)'~ 0.666 0.681 
(2m FN - F~, ) exp (ia~) 0.570 0.397 
m(2 FN - F~, ) exp (ia~,) 0.660 0.682 
(2mal~NI-IF~,I) exp (ia~):~ 0.588 0.479 
(2 FN -- F~,I) exp (iacp! 0.573 0.630 
(3 FN - 2  F~, ) exp (iap) 0.490 0.446 

* Centric Fourier coefficients were mlFNI exp (i~,)  or IvNI exp ( i~ , )  for 
all figure-of-merit-weighted and unweighted maps, respectively. 

t These data were truncated by setting to zero all coefficients having 
II~NI < 150e. 

~t ms refers to figures of  merit calculated by the method of Bricogne (1976). 

only a small cost in the correlation with the correct 
map. 

The second correlation coefficient is that with the 
model map. For a model-biased map this correlation 
will be higher than that of the correct map with the 
model map. Map coefficients that reduce model bias 
should lower this correlation, but not excessively. A 
correlation lower than that between the correct and 
model maps would indicate that correct features of 
the model were being eliminated. 

Table 2 shows the results of some test calculations 
with TD2. The two correlation coefficients were evalu- 
ated, using (19), for several types of map coefficients 
that have been suggested previously. These results 
indicate that the coefficients described here are 
superior in reducing model bias with little cost in the 
resemblance to the correct map. 

All of the map coefficients evaluated in Table 2 are 
phased by the model. The greatest model bias is found 
for the unweighted coefficient, IFNI. As expected, the 
highest correlation is given by figure-of-merit weight- 
ing (mlFNI), but this map shows considerable model 
bias. The non-centric coefficients (2mI17NI-DIF~,) 
give a large reduction in model bias with little cost 
in the correlation to the correct map. Some of this 
reduction in model bias comes from reflections with 
small IFNI, for which the map coefficient will often 
be negative; omitting reflections with small IFNI leads 
to a slight increase in model bias. Though the factor 
D might seem counter-intuitive, its omission in the 
coefficients (2mFNI-IF%I) leads to an excessive 
reduction in both correlation coefficients because the 
negative F~, component is too large. The coefficients 
[m(2IFN - F~, )] are fairly successful in the case of 
TD2, but with an accurate partial structure, the figure 
of merit would not provide a fortuitous compensation 
for the factor D. When figures of merit calculated by 
the method of Bricogne (1976) are used in the 
coefficients (2m.IFNI-IF I), both correlations are 
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quite low; they are not as low as for the related 
coefficients (2mlF I-IF I) because the overestima- 
tion of mn relative to m compensates in part for the 
omission of the factor D. Finally, the unweighted 
coefficients (2lr~l-lr~l) and (3IF~I-2IF~I) both 
lead to a low correlation with the correct map. 

Fig. 5 allows a more subjective comparison. Elec- 
tron density is shown for a part of SGT where two 
phenylalanine side chains were positioned incor- 
rectly. The map using the coefficients derived here is 
compared to a map computed with the non-centric 
coefficients (2mB]FNI--IF~,[), a figure-of-merit- 
weighted (m[FN[) map, and the correct map. The 
figure-of-merit-weighted map displays serious model 
bias. In contrast, both the (2mIFN[- DIF~, 1) and the 
(2rob F N -  F~)  maps indicate that the model is 
incorrect, and both show, at least in part, the correct 
positions of the side chains. However, the map com- 
puted with the coefficients (2mIFNI- DIF~,I) is some- 
what superior in clarity and in connectivity of the 
density. The loss of connectivity in the (2mBIFN]- 
F~, ) map, which is consistent with the correlation 
coefficients in Table 2, would seriously impede the 
interpretation of some parts of the map. 

4. Conclusion 

It has been shown that, if one takes into account 
errors in the partial structure, more accurate estimates 
of phase probabilities can be made. It should be noted 
that a partial structure can be an atomic model or a 
density-modified electron density map. The values of 
erA in the phase probability expressions (see Table 1) 
are estimated most easily with (4) (Hauptman, 1982). 
However, estimates from (4) are not reliable when 
low-intensity observations are omitted. The effect of 
errors in the observed structure factor magnitudes 
has not been considered. However, these errors are 
likely to be small compared to the difference between 
the correct and calculated structure factors in a case 
for which phase probabilities are needed, i.e. when 
the model is bad. 

Main's (1979) work on map coefficients for partial 
structures has been extended to encompass model 
errors. In a simulation, the coefficients derived 
here [(2mlFNI-DIF~,]) exp (ia~) for non-centric, 
mIFN[ exp (ic~) for centric] are objectively 
superior to coefficients that are currently in general 
use .  

s 

t 

s~"  " . /I 

[ I 

(a) (b) 

f 

(c) (d) 

Fig. 5. Comparison of electron density maps. The correct structure (SGT at refinement cycle 78) is shown with solid lines; the partial 
structure with errors (SGT at cycle 7) is shown with dashed lines. All three maps are computed using the full 1.7 A TD2 data set. 
Each map is contoured at 1.25 times the r.m.s, electron density of the map. For clarity, only contours within 1.7 A of an atom in 
the figure are shown. (a) Map calculated with non-centric coefficients (2mlFNI-DlF~Dexp(ia~) and centric coefficients 
mlFNI exp (ia~). Contoured at 0.45 e A -3. (b) Map calculated with non-centric coefficients (2mslFNI- IF~,I) exp (ia~,) and centric 
coefficients rnBIFNI exp (ia~,), where mB is the figure of merit calculated by the method of Bricogne (1976). Contoured at 0.42 e/~-3. 
(c) Map calculated with coefficients mlFNI exp (ia~) and contoured at 0.35 e ]~-3. (d) Map calculated with coefficients FN, i.e. the 
correct map, and contoured at 0.47 e ~-3. 
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Accurate phase probabilities for partial structures 
are important for purposes other than the calculation 
of electron density maps. The neglect of coordinae 
errors leads to a significant overestimation of phase 
accuracy, which would cause combined phases to be 
skewed towards model phases. In addition, any 
attempts to improve or extend model phases by direct 
methods or maximum entropy methods (Bricogne, 
1984) should benefit from more accurate phase prob- 
abilities. 

M. N. G. James encouraged me to pursue the work 
presented here, while emphasizing the need for prac- 
tical relevance. Discussions with M. Fujinaga and J. 
Moult have often been invaluable in helping me to 
clarify my ideas and their presentation. This research 
was supported by the Medical Research Council of 
Canada. During this work, I held a Medical Research 
Council of Canada Studentship, an Alberta Heritage 
Foundation for Medical Research Allowance and a 
University of Alberta Dissertation Fellowship. 

APPENDIX 

Maximum likelihood equations to determine erA 

Srinivasan & Ramachandran (1965) derived the prob- 
ability densities of ENI conditional on E~,. For the 
non-centric case, 

P( EN ; IE~,I) = [2 E N I / ( 1 -  ~'~,)] 

x exp { -  [( ENI2 + c~2[E~, 2)/(1-o '2)1} 

x Io[2CralrN IE~,I/(1- or2)]. 

Since the relationships are symmetrical for the nor- 
malized structure factors (Srinivasan & Ramachan- 
dran, 1965), the roles of EN[ and E~,I can be inter- 
changed. The structure factors are put on an absolute 
scale by changing variables: 

P( F~ ; [FN[)= (2 

x exp { - [  (IF ,I + <, ~-1F,,12)1 ]) 

x Io(2~ IF$11F,,,I/E/3), (A1) 

where a = O'A(~,p/2N) 1/2 and fl = ,~p(1-  erE). Equa- 
tion (A1) is the same as equation (7) of Lunin & 
Urzhumtsev (1984), except for the inclusion of the 
factor e and two apparent misprints in that paper (/~ 
for the first/3 and a for O~ 2 in the argument of the 
exponential). For the centric case, one can similarly 
derive from the results in Srinivasan & Ramachandran 
(1965) that 

P(IF~[; [FNI) = (2/¢refl) 1/2 

x exp {-  [([F~,I 2 + ,~:IFNI:)/2~/3]} 

xcosh (a  F~IIFN/e/3). (A2) 

Lunin & Urzhumtsev maximize the likelihood 

function 

0 = I I P (  F~,; FN ), (A3) 

where the expression for P(F~,I; FN ) is their 
equation (7). By using (31)  for non-centric and (32)  
for centric reflections, all of the data can be used in 
(A3). Estimates of a and/3 that maximize the likeli- 
hood function $ occur when the partial derivatives 
of In ~ with respect to a and/3 are both zero. When 
the appropriate expressions for the figure of merit 
are used [where X = 2 a  F~, FN/(e/3)] ,  the partial 
derivatives for the non-centric and centric terms differ 
only by a weighting factor (w = 2 for non-centric and 
1 for centric). 

O l n q , / o a = E  w(mlF~, FN -a lFN2) /e /3=O (A4) 

¢9 In 6/a/3 =)-'. w( F~ 2+a2  FN 2 

- 2 a m  F%IIFN - e/3)/2 /3 2 

=0.  (A5) 

Equations (A4) and (A5) can be solved for/3 to get 

/ 3 = E  [w(IF~ = -  c,=IFNI2)/e]/E w. (36)  

Because of the definitions of a and fl, this is not a 
surprising result. From (A4), the parameter a is deter- 
mined by finding the zero of 

R=E[w(o~IF,,,I2-mlF~IIF,,,I)/~]. (37)  

Note that a and fl will adjust to compensate for 
an arbitrary change of scale. If F~, is scaled by a 
factor ke and [FN[ by kN, then values of a scaled by 
the factor (kp/kN)  and of/3 scaled by k 2 will satisfy 
(A4) and (A5) while leaving the figures of merit 
unchanged. Therefore, if we use structure factors 
normalized so that Y. w[E[2/) -'. w = 1, a is equivalent 
to o'a, (A6) simplifies to 

/3= 1--cr~ 

and (A7) simplifies to 

R=~,  w(crA-m E~, ENI). (A8) 
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Abstract 
The theoretical basis for the integration of direct 
methods into the single-wavelength anomalous dis- 
persion technique is reexamined. The analysis shows 
that the approximations responsible for the ability to 
obtain unique estimates of the two- and three-phase 
structure invariants [Hauptman (1982). Acta Cryst. 
A38, 632-641; Giacovazzo (1983). Acta Cryst. A39, 
585-592] or twofold estimates of the three-phase 
structure invariants [Kroon, Spek & Krabbendam 
(1977). Acta Cryst. A33, 382-385] are also responsible 
for the substantial errors observed in the applications. 
It is shown that, in the general case, the method of 
joint probability distributions leads to twofold esti- 
mates of the two-phase invariants hnd eightfold esti- 
mates of the three-phase invariants. Finally, it is 
shown that more accurately determined three-phase 
invariant estimates can be obtained by the use of 
anomalous scatterer substructure information, when 
available, and the use of a strategy that recognizes 
cases in which the eight estimates are clustered around 
one or two values. These cases are then distinguished 
from those where the eight estimates are widely scat- 
tered by a weighting function. 

1. Introduction 
It has been known for some thirty years that structure 
amplitude differences due to anomalous scattering 
can be used to obtain phase information. Reviews 
on the various proposed phasing techniques based 
on this approach can be found in several publications 
(Ramaseshan & Abrahams, 1975; Sayre, 1982; 

0108-7673/86/030149-08501.50 

Ramachandran, 1964). Until recently, it was gen- 
erally believed that, as in the single isomorphous 
replacement case, the single-wavelength anomalous 
dispersion experiment could yield only estimates of 
phases bearing a twofold ambiguity. Using the 
method of joint probability distributions, Hauptman 
(1982) and, subsequently, Giacovazzo (1983) 
obtained formulae which give unique estimates of the 
two-phase and three-phase structure invariants and 
thus unique estimates of the phases themselves. These 
results differ from those reported by Kroon, Spek & 
Krabbendam (1977), who obtained an estimate of the 
three-phase sine invariant, which implies of course 
twofold ambiguity in the estimate of the invariant 
itself. 

While there is, at the moment, a substantial theo- 
retical base for the integration of direct methods into 
the anomalous dispersion phasing technique, a num- 
ber of points remain unclear. Firstly, the reasons why 
the one approach yields unique estimates of the 
invariants while the other results in a twofold 
ambiguity are not well understood. Secondly, in the 
initial applications made by Hauptman (1982) and 
Giacovazzo (1983), large errors persist in the invariant 
estimates, even when the calculations are done using 
error-free data. In addition, as noted by Giacovazzo 
(1983), the formulae tend to underestimate systemati- 
cally the variance of the distributions. This suggests 
the presence of systematic errors in the proposed 
formulae and thus suggests that better estimates can 
be obtained once the errors are characterized and 
corrected. 

In the present paper, the theoretical bases used by 
Hauptman (1982), Giacovazzo (1983) and Kroon, 

© 1986 International Union of Crystallography 


